Nonrelativistic ionization energy levels of a helium atom
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The quantum problem of three bodies with Coulomb
interaction is one of the most notable nonintegrable problems in
guantum mechanics. At the same time, extremely accurate
numerical solutions for the problem of bound states for a system
of three particles may be obtained with modern computers. For

The Hylleraas-Undheim variational principle, which
is better known in mathematics as the Rayleigh-Ritz
variational principle, is the starting point in solving the
stationary Schrodinger equation:

The generalized Hylleraas expansion for the states
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example, the nonrelativistic energy of the ground state of helium
with a nucleus of an infinite mass is now known accurately to 46
significant digits.

In the present study, a version of the variational method (the
so called "exponential” expansion) that allows to numerically
solve the quantum Coulomb three-body bound state problem
with a very high precision, which is easily applicable as well to the
states with a nonzero angular momentum, is considered. This
method is used to calculate the nonrelativistic ionization energies
of a helium atom for S, P, D, and F states. It is shown that the
developed method is an efficient and flexible instrument for
studying Coulomb systems. An analysis of convergence proves
that the method is highly accurate and demonstrates that
nonrelativistic energies accurate up to 28-35 significant digits may
be obtained with rather moderate efforts. Calculations of the
nonrelativistic ionization energy of the negative hydrogen ion H-
are also presented.

Schrodinger equation is reduced to the generalized symmetrical

eigenvalue problem with the help of the Ritz procedure:
Ax = ABx,

where A is a symmetric matrix and B is a symmetric positive
definite matrix. The standard diagonalization procedure may be
used to solve equation. In order to do that, the matrix B = LLT is
expanded into a product of upper and lower triangular matrices
and the problem is reduced to the standard symmetrical
eigenvalue problem:

A’y =AY,
A=L"'AL7T, y=1L"x.

The solution may then be written down in the explicit form:
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It can be seen that all components of vector x(n) k (except for
uk, which remains equal to unity) tend to zero under the given
normalization conditions. Practical calculations demonstrate that
this method is also the most resistant to rounding errors
(calculation errors).

for a certain Hamiltonian using variational methods. A

functional:
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A function depends on a finite set of parameters:

d(x) = Z aijXiX; / Z b,‘jJCfXj )
ij=1 i.j=1
where

ajj = (¢;, Hpj), bij = (¢i, ¢;).

The determination of minimax solutions is thus
reduced to calculating the corresponding eigenvalues of
the generalized eigenvalue problem:

Ax = ABx,

where matrices A and B are composed of coefficients aij
and bij, respectively. Hamiltonian:

and a potential of a sufficiently general form that
includes, among others, the Coulomb potential of
interparticle interaction, was derived by Kato.

where L = L for the states of “norma

|II

spatial parity

M =(-1)" and L = L + 1 for the states of “anomalous” spatial
parity M= (-1)"'. The functions are regular bipolar spherical
harmonics that depend on two angular coordinates:
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The wave function that describes the rotational

degrees of freedom:
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where L= L or L+1 (depending on the spatial parity of
the state) and the complex parameters in the exponent are
generated in a pseudorandom way.

Variational wave functions of bound states are obtained by
solving the Schrodinger equation for the quantum three-body
problem with Coulomb interaction using a variational approach

based on exponential expansion with the parameters of
exponents being chosen in a pseudorandom way. The results of
these studies demonstrated that the energy values were accurate
to 27-35 significant digits. We obtained the most accurate value
in the case of the negative hydrogen ion H- ground state as
compared to the published data.
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In Table | we check the convergence of energy for the
ground state of helium versus increasing basis sets of the

variational expansion:
TABLEI Convergence of the nonrelativistic energy of the ground

state of a helium atom.

Basis (V) E,,

10000 —2.90372 43770 34119 59831 11592 45193 9
14000 —2.90372 43770 34119 59831 11592 45194 398
18000 —2.90372 43770 34119 59831 11592 45194 40432
22000 —2.90372 43770 34119 59831 11592 45194 40443

TABLE II. Nonrelativistic energies of the 8, P, I, and F states of a helium atom. ¥ is the number of basis functions. The two lines
represent two consecutive caleulations with the largest basis sets to show convergent digits. The third line presents calculations by Drake and
Yun [23].

Staje N Ey State N E

'S 18000
I's 22000

~2.90372 43770 34119 59831 1159245194 40432 4'S 14000
—2.90372 43770 34119 59831 1159245194 40443 4'S 18000

25 IR000  —2.14507 40460 54417 41580 50289 73461 918 475 14000
'S 22000 —2.14597 40460 54417 41580 50289 75461 921 45 16000
(23] —2.14597 40460 5443(5)

—203358 67170 30725 44743 92926 44363 64
—2,03358 67170 30725 44743 92926 44363 87

—2,03651 20830 98236 29958 03780 71617 853
—2,03651 20830 98236 29958 03780 71617 874

s 14000 =2.17522 03782 36791 30573 80782 TR206 81124 4'P 18000 =2.03106 96504 50240 71475 89314 36000 3
PR 16000 =2.17522 93782 36791 3057IROTRI TR206K1125 4P 22000 ~2.03106 96504 50240 71475 89314 36094 1
[23]  —2.17522 93782 367912(1) [23]  —2.03106 96504 5024(3)
2P IR00D =2.123%4 30864 98101 35924 73331 42354 P 18000 ~2.03232 43542 96630 33195 38824 6TORT
2P 22000 =2.12384 30864 98101 35924 73331 42374 P 22000 —2.03232 43542 96630 33195 38824 67103
[23]  —2.12384 30864 98002(%) [23] —2.03232 43542 9662(2)
FPoOOI6000  —2.13316 41907 79283 20514 69927 63793 4'D 22000 —2.03127 98461 TE684 99621 39438 073
FPEoOIB000  —2.13316 41907 79283 20514 69927 63806 410 26000 —2.03127 98461 THA84 90621 30438 143
[23]  =2.13316 41907 7927(1) [23]  <2.03127 98461 T8E8T(T)
TS 18000 —2.06127 19897 40008 63074 03499 37080 2816 47D 18000 —2.03128 88475 01795 53802 34920 591
g 0000 —2.06127 19897 40908 63074 03490 37049 2824 4D 22000 —2.03128% 8847501795 53802 24920 630
[23] —2.03128 88475 01795(3)
FE§ 4000 —2.06868 90674 T2457 1919965329 11291 75048 4'F 18000 —2.03125 51443 81748 60863 20824 071
F& 16000 —2.06868 00674 72457 19199 65329 11201 75049 4'F 22000 —2.03125 51443 81748 60863 20824 079
[23]  —2.03125 51443 81749(1)
3P 18000 =2.05514 63620 91943 53602 83410913 $F O 1B000  —2.03125 51684 03245 39350 40887 2817
AP 22000 ~2.05514 63620 91943 53692 83410921 £F 22000 ~2.03125 51684 03243 39350 49887 2846
[23]  —2.05514 63620 9195(3) [23]  —2.03125 51684 032454(6)
FPoOIB000D  —2.03808 10842 74275 33134 26065 47197
FPEOO22000  —2.05808 10842 74275 33134 26965 47203
(23] —2.05808 10842 7428(4)
D 18000 —2.05562 07328 52246 48930 (0994 §19
D 22000 —2.05562 07328 52246 48939 00994 225
[23]  =2.05362 (07328 52243(6)
FOoO18000  =2.05563 63094 53261 32711 49601 63840
F0Rooo22000  =2.05563 63094 53261 32711 49601 63851

[23]  —2.05563 63094 53261(4)

TABLE III. Comparison of nonrelativistic energies of the ground state of a heliun

Author (year) | Ref N Energy (in a.u)
Drake e al.  [2] 2358 —2.90372 43770 34119
(2002) 598311
5200 —2.90372 43770 34119 59831
Korobov (2002) |[3] 1159
Schwartz [4] 24099  -2.90372 43770 34119 59831
(2006) 11592 45194 40444 66969
25310
Nakashima, 22709 -2.90372 43770 34119 59831
Nakatsuji 11592 45194 40444 66969
(2007) [5]
This work 22000 2.90372 43770 34119 59831
11592 45194 40443

TABLE V. Comparison of nonrelativistic energies of the H™ -ion ground state.

Author (year) | Ref N Energy (in a.u)

Morgan et al.  |[6] - —0.52775 10165 44375

(1990)

Drake ef al. 2276 —0.52775 10165 44377 1965

(2002) [7]

Frolov (2006) |[[8] 3700 —0.52775 10165 44377 19659 0

Nakashima, 9682 —0.52775 10165 44377 19659

Nakatsuji 08145 66747 511

(2007) [5]

This work 26000 [~0.52775 10165 44377 19659
08145 66747 5776

The last Table V is devoted to the calculations
of the single bound state in the negative hydrogen ion,
H-. In this case our numerical result for the energy is
the most precise compared to previous calculations of
this quantity. In the work of Nakashima and Nakatsuji,

the data presented

in Table V was claimed as

convergent; presumably that indicates that the free
iterative complement interaction method possesses
some difficulties in the inner criterium to determine

(2018) .
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