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INTRODUCTION VARIATIONAL METHOD

The quantum problem of three bodies with Coulomb
interaction is one of the most notable nonintegrable problems in
quantum mechanics. At the same time, extremely accurate
numerical solutions for the problem of bound states for a system
of three particles may be obtained with modern computers. For
example, the nonrelativistic energy of the ground state of helium
with a nucleus of an infinite mass is now known accurately to 46
significant digits.

In the present study, a version of the variational method (the
so called ”exponential” expansion) that allows to numerically
solve the quantum Coulomb three-body bound state problem
with a very high precision, which is easily applicable as well to the
states with a nonzero angular momentum, is considered. This
method is used to calculate the nonrelativistic ionization energies
of a helium atom for S, P, D, and F states. It is shown that the
developed method is an efficient and flexible instrument for
studying Coulomb systems. An analysis of convergence proves
that the method is highly accurate and demonstrates that
nonrelativistic energies accurate up to 28-35 significant digits may
be obtained with rather moderate efforts. Calculations of the
nonrelativistic ionization energy of the negative hydrogen ion H−

are also presented.

The Hylleraas-Undheim variational principle, which
is better known in mathematics as the Rayleigh-Ritz
variational principle, is the starting point in solving the
stationary Schrodinger equation:

for a certain Hamiltonian using variational methods. A
functional:

A function depends on a finite set of parameters:

where

The determination of minimax solutions is thus
reduced to calculating the corresponding eigenvalues of
the generalized eigenvalue problem:

where matrices A and B are composed of coefficients aij
and bij , respectively. Hamiltonian:

and a potential of a sufficiently general form that
includes, among others, the Coulomb potential of
interparticle interaction, was derived by Kato.
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The generalized Hylleraas expansion for the states

where L = L for the states of “normal” spatial parity
П =(−1)L, and L = L + 1 for the states of “anomalous” spatial

parity П= (−1)L+1. The functions are regular bipolar spherical
harmonics that depend on two angular coordinates:

The wave function that describes the rotational
degrees of freedom:

where L = L or L+1 (depending on the spatial parity of
the state) and the complex parameters in the exponent are
generated in a pseudorandom way.

INVERSE ITERATION METHOD

Schrödinger equation is reduced to the generalized symmetrical
eigenvalue problem with the help of the Ritz procedure:

where A is a symmetric matrix and B is a symmetric positive
definite matrix. The standard diagonalization procedure may be
used to solve equation. In order to do that, the matrix B = LLT is
expanded into a product of upper and lower triangular matrices
and the problem is reduced to the standard symmetrical
eigenvalue problem:

The solution may then be written down in the explicit form:

It can be seen that all components of vector x(n) k (except for
uk, which remains equal to unity) tend to zero under the given
normalization conditions. Practical calculations demonstrate that
this method is also the most resistant to rounding errors
(calculation errors).

Variational wave functions of bound states are obtained by
solving the Schrödinger equation for the quantum three-body
problem with Coulomb interaction using a variational approach
based on exponential expansion with the parameters of
exponents being chosen in a pseudorandom way. The results of
these studies demonstrated that the energy values were accurate
to 27–35 significant digits. We obtained the most accurate value
in the case of the negative hydrogen ion H− ground state as
compared to the published data.
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In Table I we check the convergence of energy for the 
ground state of helium versus increasing basis sets of the 
variational expansion:

RESULTS AND DISCUSSION

The last Table V is devoted to the calculations

of the single bound state in the negative hydrogen ion,

H−. In this case our numerical result for the energy is

the most precise compared to previous calculations of

this quantity. In the work of Nakashima and Nakatsuji,

the data presented in Table V was claimed as

convergent; presumably that indicates that the free

iterative complement interaction method possesses

some difficulties in the inner criterium to determine

actual accuracy of the calculation.
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